

INTER-RPO

CONSULTATION

BRIEFING BOOK

Inter-RPO Consultation Briefing Book

Table of Contents

<u>Tab 1</u> – Introduction

Tab 2 – Consultation Overview

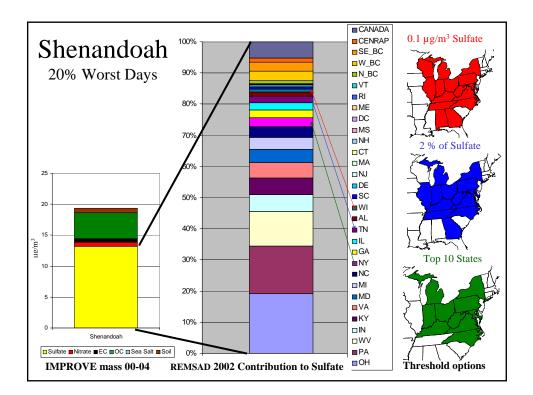
Tab 3 – MANE-VU Class 1 States' Resolution and MANE-VU Statements

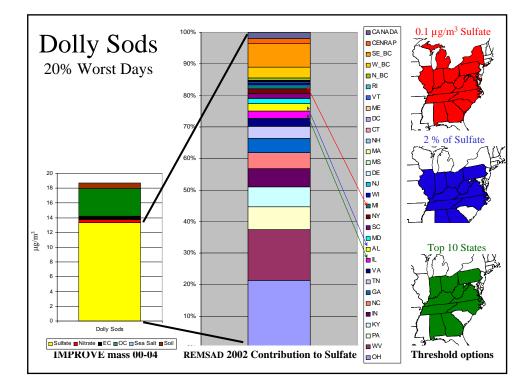
Tab 4 – Uniform Rate of Progress

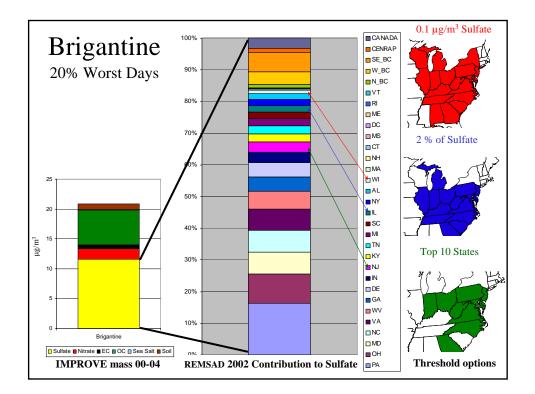
<u>Tab 5</u> – Pollution Apportionment

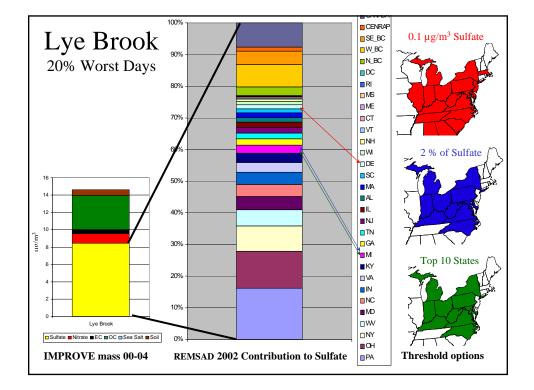
<u>Tab 6</u> – BART

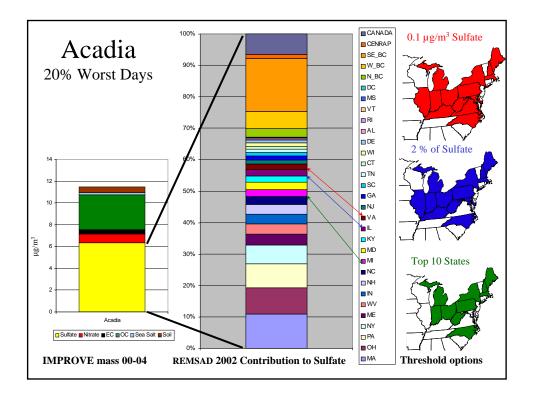
<u>Tab 7</u> – Technical Support for Reasonable Progress Goals and Long Term Strategies

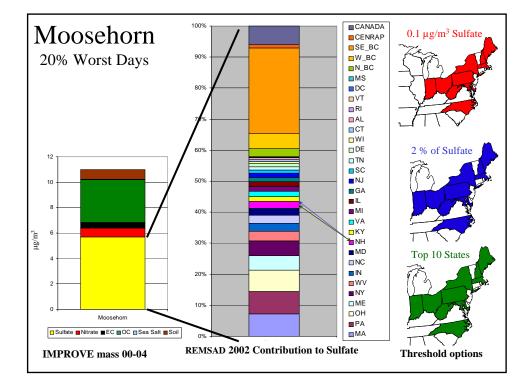

- <u>Tab 7A</u> Overview of Control Options and Reasonable Progress Report
- <u>Tab 7B</u> Approach to Control Measures and EGU Stacks Analysis
- <u>Tab 7C</u> Summary of MANE-VU's CAIR+ Report

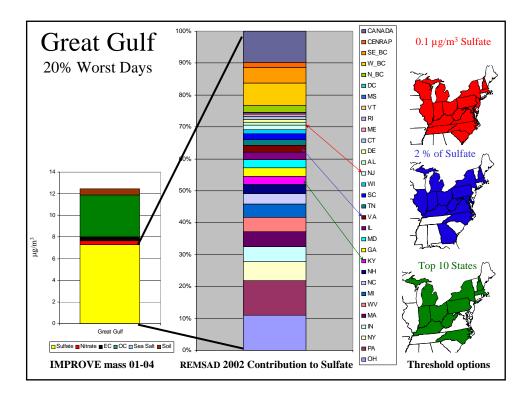

Tab 8 – Summary of Work

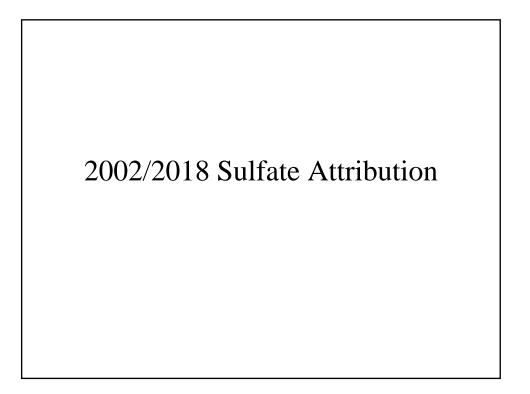

2002 Sulfate Attribution

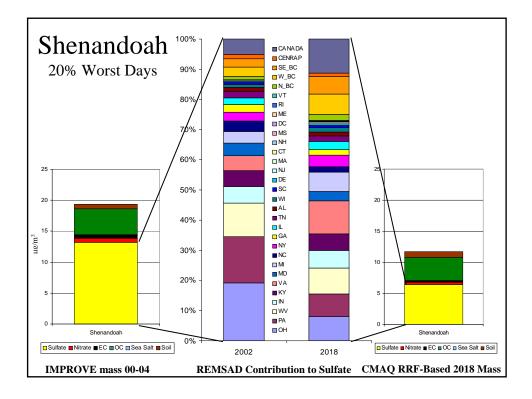

Contribution Thresholds Determined Three Ways

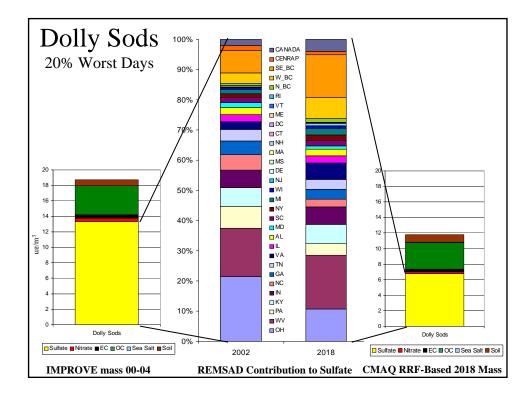

- Method 1: States/regions that contribute 0.1 ug/m3 sulfate or greater on 20% worst visibility days
- Method 2: States/regions that contribute at least 2% of total sulfate observed on 20% worst visibility days
- Method 3: Top ten contributing states on 20% worst visibility days

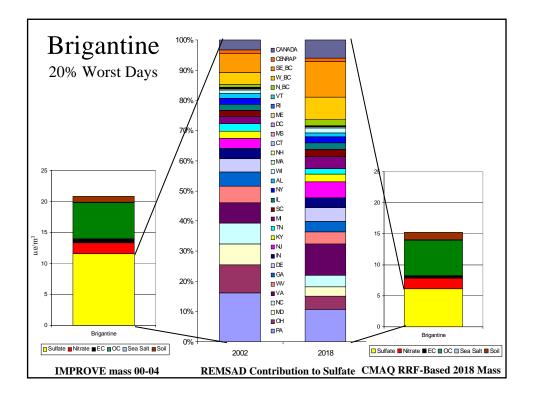


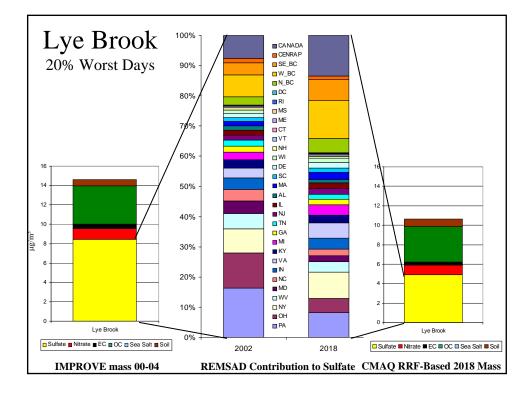


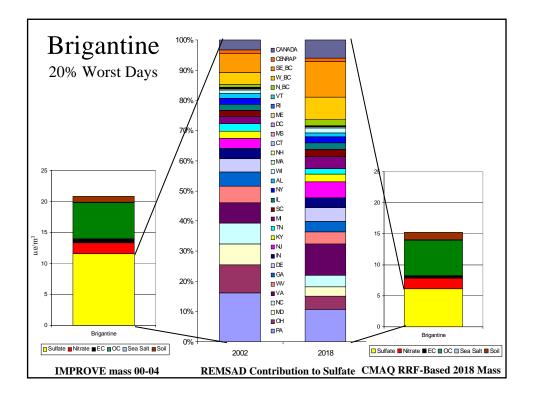


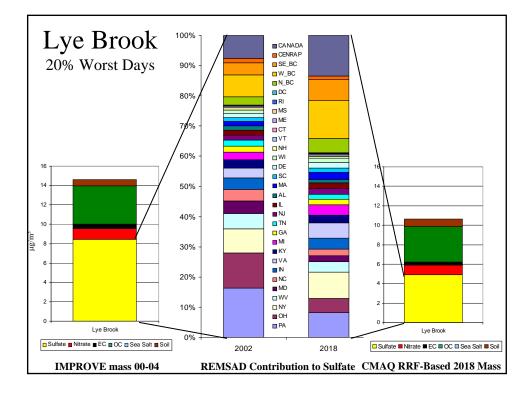


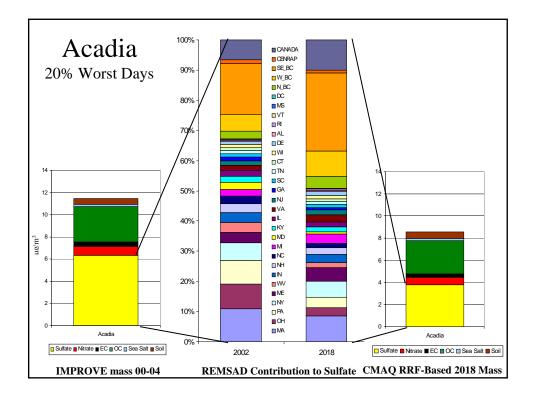


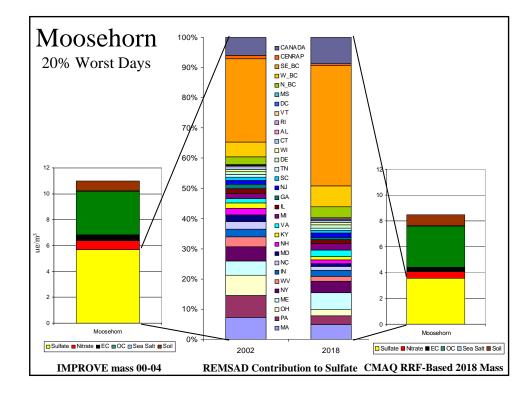


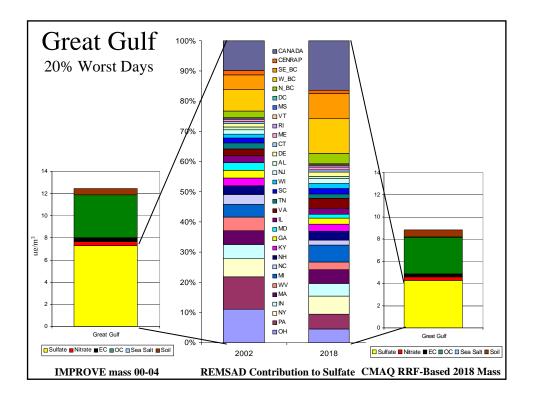


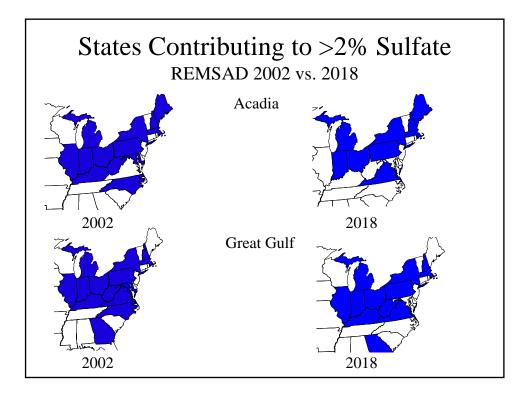


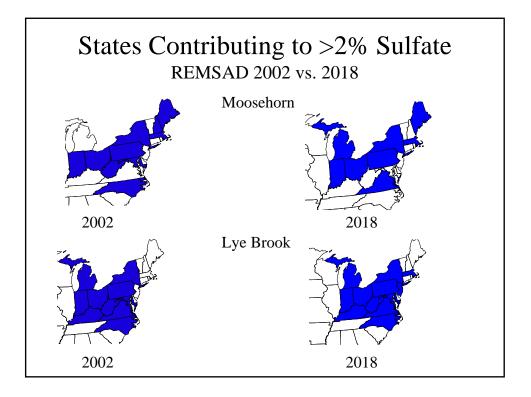


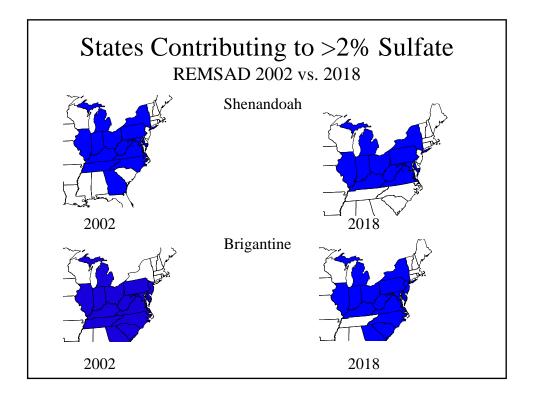


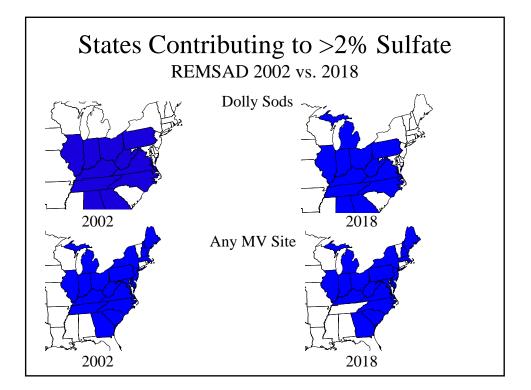












BART

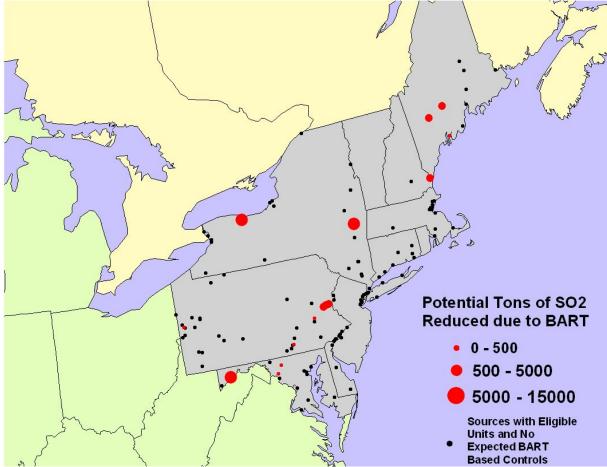
MANE-VU Approach to BART

BART-Eligible Source Identification

- MANE-VU developed preliminary list of BART-eligible EGUs based on review of Clean Air Markets Division databases (*A Basis for Control of BART-Eligible Sources*; <u>http://www.nescaum.org/documents/a-basis-for-control-of-bart-eligible-sources/</u>).
- MANE-VU developed preliminary list of BART-eligible non-EGUs based on review of state permit files (*Development of a list of BART-eligible sources in the MANE-VU region*; <u>http://www.nescaum.org/documents/memo6-bart.pdf/</u>).</u>
- States reviewed preliminary lists and have developed their own final list of BART eligible sources

'Subject' to BART

- MANE-VU developed a preliminary demonstration that broad regions of the Eastern U.S. were likely to contribute to Baseline Regional Haze (*A Basis for Control of BART-Eligible Sources*; <u>http://www.nescaum.org/documents/a-basis-for-control-of-bart-eligible-sources/</u>).</u>
- MANE-VU refined and finalized an assessment of contributing sources to sulfate in the Eastern U.S. in their contribution assessment report (*Contributions to Regional Haze in the Northeast and Mid-Atlantic United States*; <u>http://www.nescaum.org/documents/contributions-to-regional-haze-in-thenortheast-and-mid-atlantic--united-states/</u>)
- In 2004, the MANE-VU Board adopted the approach proposed by EPA that allowed states to find all MANE-VU BART-eligible sources "subject" to BART supported by findings in the preceding two reports that emissions from all MANE-VU states contribute some degree of visibility impairment in Class I areas. (No exemption modeling was conducted)


BART Determinations

- MANE-VU conducted a control technology assessment for four primary source categories that were most common in our region. This report focused on available control options and costs for EGUs, Industrial Boilers, Paper and Pulp facilities and Cement Plants. (*Assessment of Control Technology Options for BART-Eligible Sources*; <u>http://www.nescaum.org/documents/bart-control-assessment.pdf/</u>).
- MANE-VU coordinated and surveyed a working group of state staff focused on BART issues. Out of this survey process, MANE-VU identified potential BART control options for several BART eligible sources across the region. This information was synthesized to develop a regional "first-order" five-factor analysis to guide states as they develop their own five-factor analysis for BARTeligible sources in their state. (*Five Factor Analysis of BART-Eligible Sources*; <u>http://www.nescaum.org/documents/bart-memo-02-09-07.pdf/</u>). This report provides a suggested approach for considering each of the five statutory BART factors including the degree of visibility improvement that may result from installation of controls. For this factor it was suggested that a weight be given

such that no additional controls would be warranted for any source that has a current annual average contribution to visibility impairment at any Class I area of less than 0.1 delta deciview during 2002.

• Primary findings from this analysis are shown in the figure below and three attached tables. The analysis suggests that the majority of BART-eligible sources either do not warrant additional controls based on cost or visibility considerations or are being controlled already under other programs (e.g. CAIR) and that these controls will serve as BART.

Note: "No Expected BART-Based Controls" implies that the eligible units at that source either do not warrant additional controls based on cost or visibility considerations <u>or are being controlled already</u> under other programs (e.g. CAIR) and that these controls will serve as BART.

Type of Source	Number of Sources	Control Strategies	Number of Emission Units Control Strategy May Apply	Total 2002 SO₂ Emissions	Total Estimated Decrease in SO₂ (tons/yr)	Estimated Cost (\$/Ton SO2)	Notes
Chemical		SO2 Scrubber	1	24000	9600	400-8000	Mid Range (1)
Manufacturer	3	Currently Controlled	2	80	NA	0	
Glass Fiber	6	Currently Controlled	6	17	0	0	
Coal Cleaning	1	No Known Further Controls	1	68	0	0	
EGU/Coal	5	Dry Scrubber 0.33 lb/MMBtu	4	58000 4000	52600 1200	200-500 NA	Mid Range, assume 90% scrubber efficiency
200/00ai	5	0.33 ID/IVIIVIBIU		4000	1200	NA	Switch to 0.3% has
		0.3% fuel sulfur limit	3	1400	340	0	already occurred for 3 boilers.
		0.56 lb/MMBtu	1	85	NA	NA	
		2.0 % Fuel Sulfur Limit	1	600	300	NA	
		1.5% Fuel Sulfur Limit	1	5200	1300	NA	
		0.33 lb/MMBtu	1	4000	3100	NA	
EGU/Oil		3.0 lb/MWh	5	31000	NA	NA	
(Resid and	. –	1.1-1.2 lb/MMBtu	2	480	NA	NA	
Dist)	17	Currently Controlled	3	1200	0	0	
Incinerator	2	Currently Controlled	2	84	0	0	
T		No Further Controls Warranted	5	2200	0	0	
Metal Production	7	Increased efficiency of the facility's wet scrubber	2	3000	300	Limited Cost	Low Range
	30	FGD (SO ₂ Scrubber)	3	13000	11000	400-8000	Mid Range (1)
		1.8% Fuel Oil	2	6050	3000	NA	
		2.0% Fuel Oil	1	2800	1400	NA	
Paper and Pulp		No Known further controls	3	10000	0	0	
		Currently Controlled	21	4000	0	0	
Portland		Fuel switching: CE of SOx 10%	3	2300	230	NA	
		No Further Controls Warranted	5	3700	0	0	
		No Known Further Controls	7	300	0	0	
Cement	25	SO ₂ Scrubber	10	26000	19000	400-8000	Mid Range (1)
		Refinery RACT	9	5400	NA	0	
	Ī	SO2 Scrubber	3	NA	NA	400-8000	Mid Range (1)
Refinery	37	No Known Further Controls	25	NA	NA	0	

Table 1. Possible range of SO₂ controls and costs based on survey of state staff

(1) Cost estimate from NESCAUM, 2005 for Industrial Boilers NA- No information currently available.

	1 abit 2.	Possible range (based on sur	y of state st	d11
Type of Source	Number of Sources	Control Strategies	Number of Emission Units Control Strategy May Apply	Total 2002 NO _x Emissions	Total Estimated Decrease in NO _x (tons/yr)	Estimated Cost (\$/Ton NO _x)	Notes
	000.000	SCR	1	4900	3400	1300-10000	(2)
Chemical Manufacturer	3	Currently Controlled	2	5000	0	0	(2)
Glass Fiber	6	Currently Controlled	6	180	0	0	
Coal Cleaning	1	Low NOx burners, CE of 15%	1	160	25	1-2 Million (capital cost)	Low Range
		Currently Controlled	2	2900	820	0	
		SCR and 1.5 Ib/MWh	2	9800	NA	1000-1500	Mid Range (1)
EGU/Coal	5	NOx Budget & 1.5 #/MWh	1	2300	NA	NA	/
		Currently Controlled	6	3200	0	0	
		No Known Controls	3	390	0	0	
		NOx Budget	3	700	NA	NA	
		NOx Budget and 1.5 lb/MWh	4	5300	NA	NA	
EGU/Oil	17	SNCR, 1.5 lb/MWh	1	2400	NA	500-700	Mid Range (1)
Incinerator	1	Currently Controlled	2	720	0	NA	
	2	Currently Controlled	2	0	0	0	
Metal Production	5	No Further Controls Warranted	5	110	0	0	
		SCR or SNCR	2	710	430	1300-10000	Mid to High Range (2)
		No Known Further Controls	13	4500	0	0	
Paper and Pulp	30	Currently Controlled	15	4600	0	0	
		Low NOx burners	3	2800	430	200-3000	Mid Range
		Low NO _x Burners and Mid Kiln Firing, 40% Reduction	2	8500	3400	1200-10000	Mid Range (2)
		SCR, 65% Red.	1	740	480	1300-10000	(2)
		No Known Further Controls	9	2000	0	0	
Portland	a-	Currently Controlled	1	1700	0	0	
Cement	25	SNCR	9	7100	2900	900-1200	Mid Range
		Refinery RACT	9	2300	NA	NA	
		No Known Further Controls	25	0	0	0	
5.4	a -	SCR	2	460	40	1300-10000	(2)
Refinery	37	SNCR	1	1000	560	1300-10000	(2)

Table2. Possible range of NO_X controls and costs based on survey of state staff

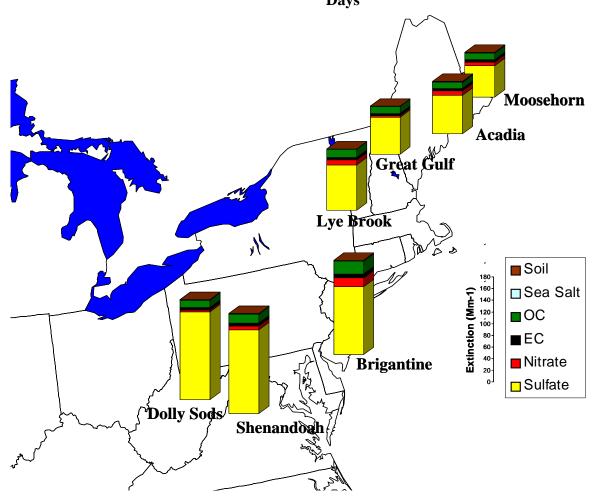
(1) Cost estimate from NESCAUM, 2005, EGU controls

(2) Cost estimate from NESCAUM 2005, Industrial Boiler controls NA- No information currently available.

		8	10		aseu oli sul ve	0	
Type of Source	Number of Sources	Control Strategies	Number of Emission Units Control Strategy May Apply	Total 2002 PM ₁₀ Emissions	Total Estimated Decrease in PM ₁₀ (tons/yr)	Estimated Cost (\$/Ton PM10)	Notes
Chemical	0	Currently	0	000	0	0	
Manufacturer	3	Controlled No Known Further	3	200	0	0	
Coal Cleaning	Coal Cleaning 1		1	46	0	0	
	-	Controls Currently					
		Controlled ESP	7	2000	0	0	
		PM co-benefit reductions expected due to FGD-25-50% reduction	2	1500	370	0	
EGU/Coal	10	Baghouse	1	1500	NA	\$50 M	Capital Cost
EGU/Natural Gas	2	Controls information included with oil/coal boilers	2	13	NA	NA	Gapital Cost
		Currently				_	
		Controlled	13	410	42	0	
		No Known Further					
EGU/Oil	18	Controls	5	50	0	0	
Incinerator	2	Currently Controlled Fabric Filter	2	0	0	0	
		Currently					
Glass Fiber	6	Controlled	6	190	0	0	
Metal Production	7	Currently Controlled	7	41	0	0	
Metal Production		Upgrade from ESP to baghouse, CE of 4% estimate	2	180	7	\$15 M	Capital Cost
		No Known Further Controls	7	280	0	0	
		Currently Controlled (ESP, Venturi Scrubbers, Demister, or MultiCyclones)	9	690	0	0	
Paper and Pulp	30	Current Controls	7	670	0	NA	
		Upgrade on current ESP, CE of 5%	3	210	11	Limited Cost	
		No Known Further Controls	15	300	0	0	
		Currently Controlled Baghouse or	6	370	0	0	
Portland Cement	25	electric precipitator	1	4	NA	NA	
		No Known Further Controls	28	NA	0	0	

Table 3. Possible range of $PM_{10}\xspace$ controls and costs based on survey of state staff

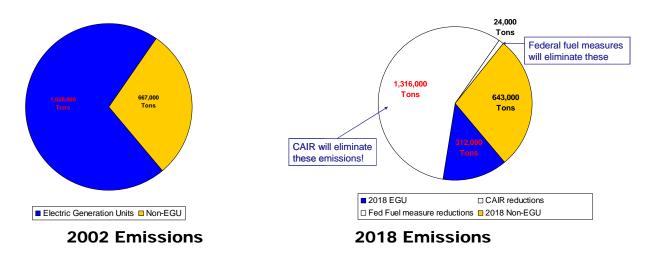
NA- No information currently available.


Technical Support for Reasonable Progress Goals and Long-Term Strategies

Technical Support for MANE-VU Statements -Control Option Assessment-

Focus on SO₂

- MANE-VU has conducted a contribution assessment and developed a conceptual model that indicates that the dominant contributor to visibility impairment at all sites during all seasons is particulate sulfate formed from emissions of SO₂. While other pollutants, including organic carbon, need to be addressed in order to achieve the national visibility goals, our technical assessments suggest that an early emphasis on SO₂ will yield the greatest near-term benefit. See **Figure 1**.
- Source region for SO₂ emissions is generally south and west (upwind) of MANE-VU Class I areas on worst visibility days.

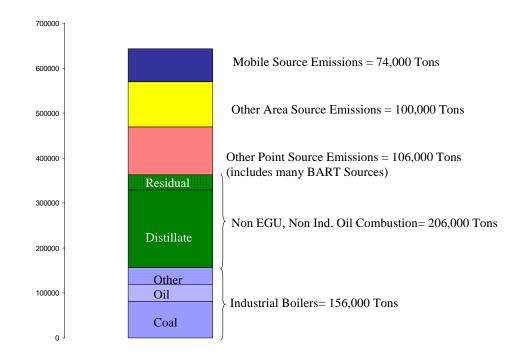

Figure 1: Contribution of Sulfur to Visibility Impairment in the Eastern U.S. on 20% Worst Days

• Wood combustion near Class I areas contributes to organic carbon. This component of fine particle pollution also contributes to visibility impairment and is observed at MANE-VU sites.

Inventory Analysis

- By 2018, implementation of CAIR is projected to reduce 1.3 million tons of MANE-VU SO₂ emissions annually. Relative to our current 2002 total of 1.6 million tons per year in the power sector, this represents a very significant reduction of over 80% of power sector emissions in the MANE-VU region.
- By contrast, non-EGU SO₂ emissions are projected to be reduced by federal programs (primarily through on-road and non-road fuel standards) in the MANE-VU region by only 24,000 tons. This would bring our current SO₂ emissions of 667,000 tons per year down to approximately 643,000 tons per year.
- Significant opportunities remain to further reduce the projected remaining 312,000 tons of annual EGU SO₂ emissions as well as the 643,000 tons of annual non-EGU SO₂ emissions. See **Figure 2**.

Figure 2: Potential Reduction Opportunities in the MANE-VU Region


EGUs

- MANE-VU remains interested in CAIR+ for SO₂ as a means of achieving PM_{2.5} NAAQS compliance and furthering regional haze progress in a reasonable (cost-effective) way.
- The MANE-VU four-factor analysis has identified several large EGUs (both within and outside MANE-VU) with significant impact on MANE-VU Class I visibility during 2002. Control options for these sources are being considered.

Non-EGU SO₂

• The 643,000 tons in non-EGU SO₂ emissions can be broken down into the following categories: Industrial Boilers (156,000 tons), Other oil combustion sources (206,000 tons), Other non-oil point sources (includes many BART emissions reduction candidates; 106,000 tons), Other area sources (100,000 tons), and other mobile sources (74,000 tons). See **Figure 3**.

Figure 3: 2018 Projected Non-EGU SO₂ Emissions in the MANE-VU Region

- Coal burning industrial boilers have non-FGD control options including Hydrate Boiler Injection, and Lime Slurry Duct Injection. These methods have been shown to achieve between 20 and 60 percent and 35 to 90+ percent control at reasonable costs in the range of \$500 to \$1000 per ton of SO₂ removed. A conservative assumption of 50% control could achieve a 40,500 ton reduction.
- Limits on the fuel-sulfur content of oil-burning industrial boilers could also yield reductions on the order of 50% from this category by requiring the use of 0.5 percent S residual oil. Such a strategy might yield a 19,000 ton reduction.
- Low-sulfur fuel requirements would offer significant additional reduction from non-EGU, non-industrial boiler sources. Requiring 500 and/or 15 ppm distillate (relative to current 2000+ ppm baseline) could result in between 140,000 and 167,000 tons of SO₂ reduction annually.
- The use of 0.5 percent (5000 ppm) residual oil (relative to current residual oil that has sulfur content of 1 percent or higher) could result in ~19,000 tons reduction.
- Preliminary findings from our BART analysis suggest additional emissions reduction potential in the 35,000 ton range from several MANE-VU BART-eligible sources.
- The combined emission reduction of all these measures would result in nearly a 40 percent reduction in SO₂ emissions from the non-EGU sources in MANE-VU relative to projected 2018 levels. See **Figure 4**.
- The MANE-VU four-factor analysis has identified several large non-EGUs (both within and outside MANE-VU) with significant impact on MANE-VU Class I visibility during 2002. Control options for these sources are being considered.

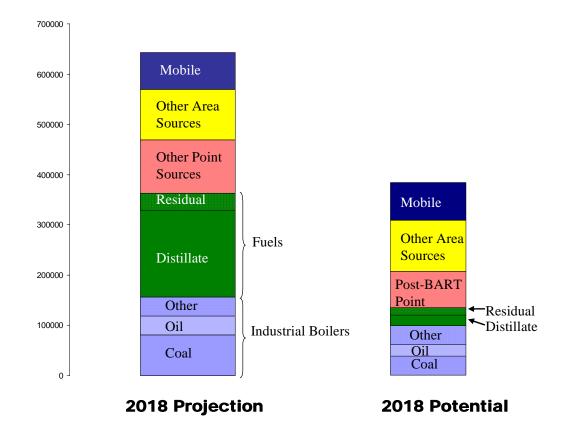


Figure 4: 2018 Potential Non-EGU SO₂ Emission Reductions in the MANE-VU Region

Long-term Emissions Management Options for MANE-VU

MANE-VU is considering (1) a CAIR+ EGU program for SO₂, (2) measures to reduce non-EGU emissions in MANE-VU by up to 40 percent or 250,000 tons of SO₂, and (3) programs to reduce wood combustion-related emissions in MANE-VU.

MANE-VU Reasonable Progress Project Summary

PURPOSE

The Clean Air Act requires states to consider the following four factors to determine which emission control measures are needed to make reasonable progress in improving visibility: 1) costs of compliance, 2) time necessary for compliance, 3) energy and non-air quality environmental impacts of compliance, and 4) remaining useful life of any existing source subject to such requirements. The plan must include reasonable measures and identify the visibility improvement that will result from those measures (i.e., the reasonable progress goal).

EPA issued draft guidance for implementing the reasonable progress requirement (dated 11/28/2005). The guidance recommends the following process for developing reasonable progress goals: 1) identify pollutants and associated source categories affecting visibility in Class I areas, 2) list possible control measures for these pollutants and source categories, 3) apply the four statutory factors to each control measure for each source category, and 4) assess the visibility improvement resulting from various combinations of strategies and select the Reasonable Progress Goals.

MANE-VU has developed information about the pollutants and sources affecting visibility and has developed a list of possible control measures for consideration. In order to assist MANE-VU in applying the four statutory factors, in January 2007, MARAMA signed a contract with MACTEC Federal Programs Inc., to prepare a technical support document. The report MACTEC is preparing under this project summarizes MANE-VU's assessment of pollutants and associated source categories affecting visibility in Class I areas in and near MANE-VU, lists possible control measures for those pollutants and source categories, and develops the requisite four factor analysis. NESCAUM will assist MANE-VU by conducting air quality and visibility modeling to address the fourth step of the process described in EPA's guidance.

POLLUTANTS AND SOURCE CATEGORIES AFFECTING VISIBILITY

What Pollutants Affect Visibility?

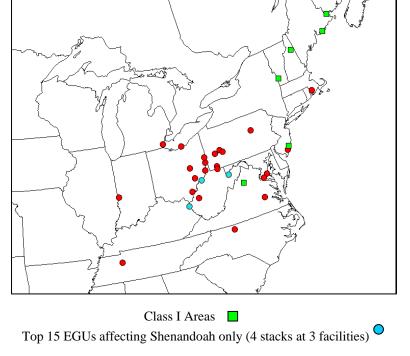
The MANE-VU Contribution Assessment (NESCAUM 2006) and the MANE-VU Conceptual Model for Fine Particles and Regional Haze Air Quality Problems (NESCAUM 2006) identify sulfate as the largest contributor to visibility impairment in Mid-Atlantic and Northeastern Class I areas. Organic carbon is typically the second-largest contributor to regional haze in the MANE-VU region.

What are the Major Source Categories of these Pollutants?

The largest source category of sulfur dioxide in the region is electric generating units (EGUs). Additional SO₂ source categories analyzed include oil-fired installations at residential, commercial, institutional, or industrial facilities; industrial, commercial, and institutional (ICI) boilers; and cement and lime kilns. According to Appendix B of the MANE-VU Contribution Assessment (NESCAUM 2006), woodsmoke also contributes to visibility impairment, with contributions typically higher in rural areas than urban areas, winter peaks in northern areas from residential wood burning, and occasional large summer impacts at all sites from wildfires. The MANE-VU *Technical Support Document on Agricultural and Forestry Smoke Management in the MANE-VU Region* concluded that fire from land management activities was not a major contributor to regional haze in MANE-VU Class I areas, and that the majority of emissions from fires were from residential wood combustion.

Based on available information, the MANE-VU Reasonable Progress Workgroup selected the following source categories for analysis:

- Coal and oil-fired Electric Generating Units, (EGUs);
- Point and area source industrial, commercial and institutional boilers;
- Cement kilns;
- Lime kilns;
- The use of heating oil; and
- Residential wood combustion and open burning.


WHERE DO THESE POLLUTANTS ORIGINATE?

Specific EGUs are Important

Roughly 70% of the 2.3 million tons of SO_2 emission in the 2002 MANE-VU emissions inventory (2002 MANE-VU Emission Inventory Version 3) were from EGUs, making them the largest SO_2 source category in terms of visibility impairing emissions. Figure 1 shows the locations of 34 EGU stacks that have impacts on at least one Class I area in MANE-VU or Shenandoah (a nearby Class I area). Many of these EGUs are in MANE-VU but some are outside of the region.

Figure 1: Key EGUs affecting Class I area(s) (Moosehorn, Acadia, Great Gulf, Lye Brook, or Shenandoah)

Top 15 EGUs affecting any MANE-VU Class I area (30 stacks at 23 facilities)

Wood Smoke is More Local in Origin

Figure 2 is from Appendix B of the MANE-VU Contribution Assessment (NESCAUM 2006) and represents the results of source apportionment and trajectory analyses. It illustrates that the impacts of woodsmoke on MANE-VU Class I areas are more likely due to emissions from within MANE-VU and Canada. The green highlighted section of the map shows the woodsmoke source region for several MANE-VU Class I areas represented by the green stars. (Brigantine was not analyzed for this map.)

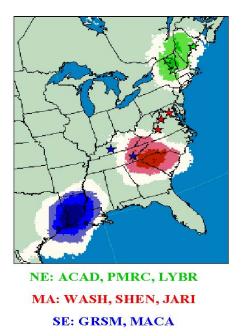


Figure 2: Woodsmoke Source Regional Aggregations

Defining the Area of Influence

In order to identify states where emissions are most likely to influence visibility in MANE-VU Class I areas, analyses such as represented in Figure 1 and 2 above as well as other analyses documented in the MANE-VU Contribution Assessment were considered.

The MANE-VU States concluded that it was appropriate to include in the area of influence all of the states participating in MANE-VU plus other states that modeling showed contributed at least 2% of the sulfate ion at MANE-VU Class I areas in 2002.

Figure 3 shows for Acadia, Brigantine, Lye Brook, and Great Gulf the modeled percent of sulfate ion impact from specific states. The state with the largest individual sulfate impact at that Class I area is shown at the bottom of the bar and the list to the right. The size of the bar slice is proportional to the modeled impact (using the REMSAD model). The percentages at the left of the bar refer to the percent of SO_4 impact within the modeling domain. Each of the states at and below the arrow contributes more than 2% of modeled sulfate ion to that Class I area.

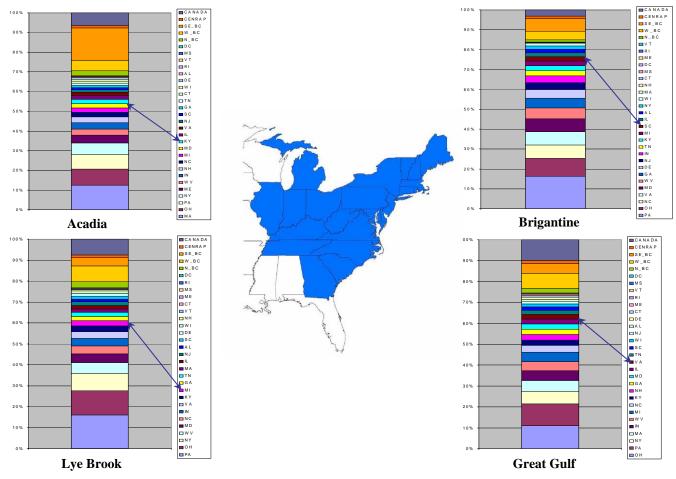


Figure 3: States Contributing to Sulfate in MANE-VU in 2002

Source: NESCAUM, MANE-VU Contribution Assessment 2006

POTENTIAL CONTROL MEASURES AND FOUR FACTOR ANALYSIS

In consultation with the MANE-VU Reasonable Progress Workgroup, MACTEC has developed a report that identifies potential control measures and assesses costs, time needed for compliance, energy and non-air quality impacts, and the remaining useful life of affected sources. Table 1 presents a summary of the four factor analysis for the source categories analyzed; more detailed information is available in the draft final report document, which may be found on MARAMA's website at http://www.marama.org/visibility/RPG/index.html

Source Category	Primary Regional Haze Pollutant	Average Cost in 2006 dollars (per ton of pollutant reduction)	Compliance Timeframe	Energy and Non-Air Quality Environmental Impacts	Remaining Useful Life
Electric Generating Units	SO ₂	IPM* v.2.1.9 predicts \$775-\$1,690 \$170-\$5,700 based on available literature	2-3 years following SIP submittal	Fuel supply issues, potential permitting issues, reduction in electricity production capacity, wastewater issues	50 years or more
Industrial, Commercial, Institutional Boilers	SO ₂	\$130-\$11,000 based on available literature	2-3 years following SIP submittal	Fuel supply issues, potential permitting issues, control device energy requirements, wastewater issues	10-30 years
Cement and Lime Kilns	SO ₂	\$1,900-\$73,000 based on available literature	2-3 years following SIP submittal	Control device energy requirements, wastewater issues	10-30 years
Heating Oil	SO ₂	\$550-\$750 based on available literature. There is a high uncertainty associated with this cost estimate.	Currently feasible. Capacity issues may influence timeframe for implementation of new fuel standards	Increases in furnace/boiler efficiency, Decreased furnace/boiler maintenance requirements	18-25 years
Residential Wood Combustion	PM	\$0-\$10,000 based on available literature	Several years - dependent on mechanism for emission reduction	Reduce greenhouse gas emissions, increase efficiency of combustion device	10-15 years

Table 1: Summary of Results from the Four Factor Analysis

* EPA's Integrated Planning Model

MANE-VU invited all interested parties to submit comments on the draft report by May 4th to Angela Crenshaw at MARAMA (acrenshaw@marama.org). Additional comments will be considered if time permits.

THE MANE-VU REASONABLE PROGRESS WORKGROUP

This project is guided by MANE-VU's Reasonable Progress Workgroup, which reviewed draft documents and reports to MANE-VU's Technical Support Committee. The Workgroup met via conference call several times per month, with twelve calls in total. Regular participants include the MANE-VU states and tribes, VISTAS, LADCO, NESCAUM, OTC, the Environmental Protection Agency, the National Park Service, and the Forest Service. Workgroup minutes, and all related project documents are available on the MARAMA website:

http://www.marama.org/visibility/RPG/index.html

CONTACT INFORMATION

Angela Crenshaw, MARAMA, acrenshaw@marama.org, 410-467-0170 Susan Wierman, MARAMA, swierman@marama.org, 410-467-0170 Art Werner, MACTEC, aswerner@mactec.com, 919-941-0333

MARAMA, 711 W. 40th Street Suite 312 Baltimore MD 21211

MANE-VU's Approach to Developing Regional Haze Control Measures for the 2018 Milestone

MANE-VU's approach towards deciding which control measures to pursue for regional haze is based on technical analyses documented in the following reports:

- Contributions to Regional Haze in the Northeast and Mid-Atlantic United States (called the Contribution Assessment),
- Comparison of CAIR and CAIR Plus Proposal using the Integrated Planning Model (called the CAIR+ Report), and
- Assessment of Reasonable Progress for Regional Haze in MANE-VU Class I Areas (callsed the Reasonable Progress Report).

Pollutants of Concern

Finalized in August 2006, the Contribution Assessment reflects "a conceptual model in which sulfate emerges as the most important single constituent of haze-forming fine particle pollution and the principle cause of visibility impairment across the region. Sulfate alone accounts for anywhere from one-half to two-thirds of total fine particle mass on the 20 percent haziest days at MANE-VU Class I sites." Organic carbon was shown to be the second largest contributor to haze. As a result of the dominant role of sulfate in the formation of regional haze in the Northeast and Mid-Atlantic region, the report states that "[T]hese findings suggest that an effective emissions management approach would rely heavily on broad-based regional SO₂ control efforts in the eastern United States."

Contributing Sources

The Contribution Assessment reviewed various modeling techniques, air quality data analysis, and emissions inventory analysis to identify source categories and states that contribute to visibility impairment in MANE-VU Class I areas. With respect to sulfate, emissions from within MANE-VU in 2002 were responsible for about 25-30 percent of the sulfate at MANE-VU Class I areas. Sources in the MRPO and VISTAS regions were responsible for about 15-25 percent each. Point sources dominated the inventory of SO₂ emissions. Biomass combustion was also identified by source apportionment analysis as a local source contributing to visibility impairment.

Identifying Potential Strategies

The process by which MANE-VU arrived at a set of proposed regional haze control measures to pursue for the 2018 milestone started in late 2005. OTC selected a contracting firm to assist with the analysis of ozone and regional haze control measure options. OTC provided the contractor with a "master list" of some 900 potential control measures, based on experience and previous state implementation plan work. With the help of an internal OTC control measure workgroup, the contractor identified reasonably

available regional haze control measures for MANE-VU's further consideration. MANE-VU then developed an interim list of control measures, which for regional haze included: beyond-CAIR sulfate reductions from EGUs, low-sulfur heating oil (residential and commercial), ICI boilers (both coal and oil-fired), lime and cement kilns, residential wood combustion, and outdoor burning (including outdoor wood boilers).

The next step in the regional haze control measure selection process was to further refine the interim list. The beyond-CAIR EGU strategy continued to stay on the list since EGU sulfate emissions have, by far, the largest impact on visibility in the MANE-VU Class I areas. Likewise, a low-sulfur oil strategy gained traction after a NESCAUM-initiated conference with refiners and fuel-oil suppliers concluded that such a strategy could realistically be implemented in the 2014 timeframe. Thus the low-sulfur heating oil and the oil-fired ICI boiler sector control measures merged into an overall low-sulfur oil strategy for #2, #4, and #6 residual oils for both the residential and commercial heating and oil-fired ICI boiler source sectors.

During MANE-VU's internal consultation meeting in March 2007, member states reviewed the interim list of control measures to make further refinements. States determined, for example, that there may be too few coal-fired ICI boilers in the MANE-VU states for that to be considered as a "regional" strategy, but could be a sector pursued by individual states. They also determined that lime and cement kilns, of which there are few in the MANE-VU region, would likely be handled via their BART determination process. Residential wood burning and outdoor wood boilers remain on the list for those states where localized visibility impacts may be of concern even though emissions from these sources are primarily organic carbon and direct particulate mater. Finally, outdoor wood burning was determined to also be better left as a sector to be examined further by individual states, due to issues of enforceability and penetration of existing state regulations.

The CAIR+ Report documents the analysis of the cost of additional SO_2 and NO_x controls at EGUs in the Eastern U.S. The Reasonable Progress Report documents the assessment of control measures for EGUs and the other source categories selected for analysis.

Determining What Is Reasonable

MANE-VU is guided by two primary principles in which regional control measures to pursue in reducing sulfate levels: 1) that the measures are "reasonable," and 2) that the measures are in place by 2018, the first milestone date in the Congressional goal of achieving natural visibility conditions by 2064. Reasonable progress towards meeting the 2064 goal is defined in section 169A of the Clean Air Act, and includes the mandatory consideration of four factors: 1) the cost of compliance, 2) the time necessary for compliance, 3) the energy and nonair quality environmental impacts of compliance, and 4) the remaining useful life of any existing source subject to such requirements.

Guided by these principles, MANE-VU has arrived at a suite of suggested control measures that the MANE-VU states will pursue as a region. The corollary is that the

MANE-VU Class I states (Maine, New Hampshire, Vermont, and New Jersey) will ask states outside of MANE-VU that contribute to visibility impairment to pursue similar strategies for reducing sulfate emissions from source sectors, or equivalent sulfate reductions if not from the source sectors that MANE-VU has identified for its own sulfate reductions. The guiding principle in MANE-VU's approach to consulting with states outside of MANE-VU is that we cannot ask for more equivalent reductions than we are willing to pursue ourselves.

The regional strategies to reduce SO₂ emissions that MANE-VU has identified as reasonable within and outside MANE-VU by 2018 are: 1) Best Available Retrofit Technology (BART) sulfate reductions from specific source sectors defined in the Clean air Act; and 2) a low-sulfur oil strategy for all sectors (commercial, industrial, and residential); and 3) an EGU strategy that targets a 90% sulfate reduction from each of the key stacks impacting any MANE-VU Class I area (comprising a total of 167 EGU stacks), or a reduction equivalent to that amount within each State. Individual states may also pursue additional strategies.

The strategies for reducing SO₂ emissions that MANE-VU has identified as potentially reasonable for states outside of the MANE-VU region to pursue by 2018 are: 1) Best Available Retrofit Technology (BART) sulfate reductions from specific source sectors defined in the Clean air Act); 2) an EGU strategy that targets a 90% sulfate reduction from each of the key stacks impacting any MANE-VU Class I area (comprising a total of 167 EGU stacks), or a reduction equivalent to that amount within each State; and 3) the application of reasonable controls on non-EGU sources resulting in a 28% reduction in non-EGU SO₂ emissions, relative to on-the-books, on-the-way 2018 projections used in regional haze planning, by 2018, which is comparable to the projected reductions MANE-VU will achieve through its low sulfur oil strategy.

MANE-VU has considered potential SO₂ reductions available from the coal-fired ICI sector, and has concluded that states outside of MANE-VU may find this to be a viable source sector for SO₂ reductions comparable to those obtained from oil-fired ICI boilers within MANE-VU. As noted above, additional reductions from this category within the MANE-VU region will be considered on a state-specific basis. MANE-VU states believe all contributing states should continue to seek viable and enforceable means to lower sulfur dioxide and nitrogen oxide emissions from all coal-burning facilities by 2018, relative to 2002. Finally, MANE-VU is considering how to best deal with residential wood combustion and outdoor wood boilers. Although neither have significant SO₂ emissions, both of these source categories emit volatile and semi-volatile organic carbon and direct particulate matter that also impact visibility. Regarding these and other source sectors, the contributing states should continue to evaluate additional control measures, including energy efficiency and alternative clean fuels, to determine if they are reasonable for implementation in the short or long term, including, but not limited to, new source performance standards for wood combustion.

Low-Sulfur Oil Strategy

The reasonable assumption underlying the low-sulfur fuel oil strategy is that refiners can, by 2018, produce home heating and fuel oils that contain 50% less sulfur for the heavier grades (#4 and #6 residual), and a minimum of 75% and maximum of 99.25% less sulfur in #2 fuel oil (also known as home heating oil, distillate, or diesel fuel) at an acceptably small increase in price to the end user. As much as 75% of the total sulfur reductions achieved by this strategy will come from using the low-sulfur #2 distillate for space heating in the residential and commercial sectors. While costs for these emissions reductions are somewhat uncertain, they are quite reasonable in comparison to costs of controlling other sectors as documented in the Reasonable Progres Report, estimated at \$550 to \$750 per ton.

MANE-VU is cognizant of the fact that the use of #2 distillate for residential, commercial, and industrial heating and process applications is primarily a Northeast state phenomenon. The MANE-VU Class I states would then ask other states outside of MANE-VU to pursue equivalent reasonable sulfur reductions from their industrial, commercial, and institutional facilities.

Some MANE-VU states are proceeding with rulemakings to impose low-sulfur oil regulations much sooner than 2018 in order to aid their $PM_{2.5}$ attainment efforts. However, all of the MANE-VU states agree that a low-sulfur oil strategy is both reasonable and achievable by 2018.

EGU Strategy

MANE-VU has recently identified emissions from 167 stacks at EGU facilities as having visibility impacts in MANE-VU Class I areas that make controlling emissions from those stacks crucial to improving visibility at MANE-VU Class I areaas. Unfortunately, when the Clean Air Interstate Rule (CAIR) is implemented (starting in 2010 for Phase I and 2015 for Phase II), there is no guarantee that sulfate emissions will be reduced at all of these units as generators have the legal option to forgo sulfur controls in favor of allowance purchases. MANE-VU's approach for this source sector is to pursue a 90% control level on SO₂ emissions from these stacks by 2018. MANE-VU has concluded that pursuing at least this level of sulfur reduction is both reasonable and cost-effective. Even though current wet scrubber technology can achieve sulfur reductions greater than 95%, historically a 90% sulfur reduction level includes lower average reductions from dry scrubbing technology. The cost for SO₂ emissions reductions will vary by unit, and the Reasonable Progress report summarizes the various control methods and costs available, ranging from \$170 to \$5,700 per ton.

BART

Imposition of BART on BART-eligible facilities and units in the MANE-VU states is up to each state in its BART-determination process. MANE-VU is expecting significant sulfur reductions from this mandated control measure. Since this is a very sector and

source-specific process, MANE-VU does not anticipate that the level of BART reductions achieved in one region will necessarily be the same as the level of BART reductions achieved in another region.

Notes on List of Top Electric Generating Emissions Points Contributing to Visibility Impairment in MANE-VU

A list of top stacks impacting MANE VU Class I areas was generated by MARAMA on June 12, 2007. The following approach was taken to develop that table.

As part of the MANE VU Contribution Assessment, CALPUFF modeling was performed to identify the top 100 stacks that impact three of the MANE VU Class I areas. These three areas are Acadia, Brigantine and Lye Brook. Details of the modeling are provided in Appendix D of the Contribution Assessment. The 100 top stacks for each Class I area are documented in Tables 10 and 20 from Appendix D "Dispersion Model Techniques" of the Contribution Assessment.

The modeling was performed by two independent modeling centers using two sets of meteorological data—the MM5 and the NWS observation-based meteorology. Because of the differences in meteorological input data, there are some differences in the results from the two modeling centers. The MM5 modeling identified some stacks as being in the top 100 impacting a MANE-VU Class I area that were not identified by the VTDEC modeling, and vice versa. For purposes of the table, all stacks on either list were included.

MARAMA combined the lists of the top 100 EGU stacks in Tables 10 and 20 from Appendix D of the Contribution Assessment. Because there were 100 stacks for each of the three Class I areas and there were two tables for each Class I area (one for MM5 meteorology and second table for (VTDEC) meteorology) there were 600 stacks in the initial file. There were many duplications of identical stacks, either because they impacted more than one Class I area or because they were identified by both modeling centers.

MARAMA eliminated the duplications. MARAMA also eliminated the stacks that were outside the consultation area previously identified. The consultation area includes states contributing at least 2% of the sulfate monitored at MANE-VU Class I areas in 2002. This resulted in 167 unique stacks impacting one or more MANE VU Class I areas.

The Appendix D tables did not identify the units or facilities that were modeled, only providing a CEMS Identification number. MARAMA used information contained in IPM input files to identify the plant name and type where the stack was located.

The modeling used 2002 emissions data from EPA's records of Continuous Emission Monitoring System (CEMS) data reported by the power companies. This hourly data represents actual emissions from the stack on which the CEMS is placed. A power plant may have several stacks. Each stack may vent emissions from one or more units at the plant. Although the modeling was done on an hourly basis, the emissions data reported in the table represents the aggregate of all the hours in 2002 from a given stack. Each of the modeling centers summed hourly CEMS data over the year to get a total annual emission rate in units in tons per year (TPY). This summing exercise was performed independently as part of the two modeling efforts. Because of round-off error, the annual emission numbers generated by the two modeling efforts shown in the Contribution Assessment are slightly different. For this table, the two annual emission rates were averaged to provide a single annual emission rate for each stack.

Finally, MARAMA developed a composite ranking from the two modeling center results for the three Class I areas to get a single overall ranking for each stack. The impact of each stack on the three Class I areas using two different meteorological sets resulted in up to six impact rankings from 1 to 100, with the lowest rank being the greatest impact. These rankings were averaged to provide an average stack rank. The stacks were sorted from lowest to highest average rank and then an integer ranking ranging from 1 to 167 was assigned to each stack.

There are several differences between this list and lists distributed previously. In previous discussions, MARAMA had prepared a list of all units at each of the facilities identified as having one of the top 100 stacks by the VTDEC modeling. That list included units which may or may not be vented to the stacks that were identified in the top 100 stacks for each of the Class I areas. The previous list also included sources outside the MANE-VU consultation area, and it did not reflect sources on the list generated by the modeling center that used MM5 meteorological data.

For this list, MARAMA did not list units. As noted above, only stacks listed in the tables from the Contribution Assessment have been listed. This resulted in a list of 167 stacks, including 24 that were not previously included because they were only identified by the MM5 modeling, not the VTDEC modeling. The use of stacks rather than units or facilities was chosen as more consistent with the results of the modeling presented in the Contribution Assessment.

		TOP EL	ECTRI	C GEI	NERA	TING	EMISS	SION	POINTS CC	ONTRIBUTII	NG TC	VISIBILITY IMPAIRMEN	NT IN MANE-VU	- MODELED BY E	BOTH VTDEC AND MM5
Row number	CEMS Unit	91	Acadia	Acadia I.	Brig MARE	Cur.	Lye Mine	Lye Lyn	/ ရ		Add Son	Pl _{ant Name}	Plant Type	State Name	Code
Row	CEM	ORIS,	^{Aca} o	^A cao	Brig	Brig	Lye /	1 er	MM		/ /	Plant	Plant	State	State
1 D	005935	593			90	54			2,138	2,136	1	EDGE MOOR	O/G Steam	Delaware	10
	005941	594				95			,	3,742		INDIAN RIVER	Coal Steam	Delaware	10
3 D	005942	594				74				3,760	2	INDIAN RIVER	Coal Steam	Delaware	10
4 D	005943	594			84	44			4,686	4,682		INDIAN RIVER	Coal Steam	Delaware	10
5 D	005944	594			69	21			7,390	7,384		INDIAN RIVER	Coal Steam	Delaware	10
	007031LR	703	79			86		75	38,520	38,486		BOWEN	Coal Steam	Georgia	13
7 D	007032LR	703	72		89		61	68	37,289	37,256	3	BOWEN	Coal Steam	Georgia	13
8 D	007033LR	703	71	99	74	64	63	94	43,067	43,029	3	BOWEN	Coal Steam	Georgia	13
9 D	007034LR	703	69	95	86	58	60	89	41,010	40,974	3	BOWEN	Coal Steam	Georgia	13
10 D	00709C02	709		84		75	89	71	47,591	47,549	4	HARLLEE BRANCH	Coal Steam	Georgia	13
11 D	00861C01	861	28	96		65	46	62	42,355	42,318	5	COFFEEN	Coal Steam	Illinois	17
12 D	010011	1001			53				28,876	28,851	6	CAYUGA	Coal Steam	Indiana	18
13 D	010012	1001	95		46	68			26,016	25,992	6	CAYUGA	Coal Steam	Indiana	18
14 D	00983C01	983					52		19,922			CLIFTY CREEK	Coal Steam	Indiana	18
	00983C02	983					54		18,131		7	CLIFTY CREEK	Coal Steam	Indiana	18
16 D	0099070	990		55	100	70		37	29,801	29,774	8	ELMER W STOUT	O/G Steam	Indiana	18
17 D	06113C03	6113	30	48	14	43	22	41	71,182	71,119		GIBSON	Coal Steam	Indiana	18
18 D	06113C04	6113	44	70		83	73	83	27,848	27,823		GIBSON	Coal Steam	Indiana	18
	01008C01	1008			73		100	47	24,109	24,087		R GALLAGHER	Coal Steam	Indiana	18
	01008C02	1008			98			55	23,849	23,828		R GALLAGHER	Coal Steam	Indiana	18
	06166C02	6166	62	44	30	81	33	57	51,708	51,663		ROCKPORT	Coal Steam	Indiana	18
	00988C03	988						77		15,946		TANNERS CREEK	Coal Steam	Indiana	18
	00988U4	988	14	29	52	34	7	19	45,062	45,022		TANNERS CREEK	Coal Steam	Indiana	18
	01010C05	1010	43	32	12	28		17	60,747	60,693		WABASH RIVER	Coal Steam	Indiana	18
	067054	6705	34	60	34		44	73	40,118	40,082		WARRICK	Coal Steam	Indiana	18
	06705C02	6705	92		75		96		27,895			WARRICK	Coal Steam	Indiana	18
	01353C02	1353	38	30	15	26		29	41,545	41,508		BIG SANDY	Coal Steam	Kentucky	21
	01384CS1	1384	22				58		21,837	21,817		COOPER	Coal Steam	Kentucky	21
	01355C03	1355			51	99		52		38,070		E W BROWN	Coal Steam	Kentucky	21
	060182	6018					39		12,083			EAST BEND	Coal Steam	Kentucky	21
	01356C02	1356		71		88	50	59	25,646	25,623		GHENT	Coal Steam	Kentucky	21
	060411	6041	61						18,375			H L SPURLOCK	Coal Steam	Kentucky	21
	060412	6041	53		91			98	20,491	20,473		H L SPURLOCK	Coal Steam	Kentucky	21
	013644	1364			81				7,185			MILL CREEK	Coal Steam	Kentucky	21
35 D	013782	1378					87		20,245		22	PARADISE	Coal Steam	Kentucky	21

Plants in Red are added as a result of MM5 met modeling. List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

Printed : 7/17/2007 12:34 PM

Row _{Number}	CEMS Unit	ORIS ID	Acadia A.	Acadia I	Brig Mar	Chu	Lye MME	2015	2002 500	4 /	100 TPY	Plant Name	Plant Type	Siate Name	^e Code
Row /	CEN	18	/ ⁴ ca	4 ⁵ 4 /	Brig	Brig	/ ⁷	erre The	WW		/	Plan	Plan	Stat	State
36 D	013783	1378	76	100	11	84	55	42	46,701	46,660		PARADISE	Coal Steam	Kentucky	21
37 D	015074	1507	78						1,170		23	WILLIAM F WYMAN	O/G Steam	Maine	23
38 D	006021	602	90		38			100	20,014	19,996	24	BRANDON SHORES	Coal Steam	Maryland	24
39 D	006022	602	99		29			99	19,280	19,263	24	BRANDON SHORES	Coal Steam	Maryland	24
	015521	1552			63				17,782	17,767		C P CRANE	Coal Steam	Maryland	24
	015522	1552			68				14,274	14,262		C P CRANE	Coal Steam	Maryland	24
	01571CE2	1571	42	47	1	4		28	48,566	48,522		CHALK POINT	Coal Steam	Maryland	24
	01572C23	1572	73	79	47	45	69	32	32,188	32,159		DICKERSON	Coal Steam	Maryland	24
	015543	1554			77				10,084	10,075		HERBERT A WAGNER	O/G Steam	Maryland	24
	015731	1573	67	50	16	12		38	36,823	36,790		MORGANTOWN	Coal Steam	Maryland	24
	015732	1573	59	53	10	13	51	39	30,788	30,761		MORGANTOWN	Coal Steam	Maryland	24
	016191	1619	37	80					9,252	9,244		BRAYTON POINT	Coal Steam	Massachusetts	25
	016192	1619	35	66					8,889	8,881		BRAYTON POINT	Coal Steam	Massachusetts	25
	016193	1619	4	14	65	56			19,325	19,308		BRAYTON POINT	Coal Steam	Massachusetts	25
	015991	1599	5	36			65		13,014	13,002		CANAL	O/G Steam	Massachusetts	25
	015992	1599	7	27			74		8,980	8,971		CANAL	O/G Steam	Massachusetts	25
	016061	1606						48		5,249		MOUNT TOM	Coal Steam	Massachusetts	25
	016261	1626	85						3,430			SALEM HARBOR	Coal Steam	Massachusetts	25
	016263	1626	91	78					4,971	4,966		SALEM HARBOR	Coal Steam	Massachusetts	25
	016264	1626	32	25					2,880	2,878		SALEM HARBOR	O/G Steam	Massachusetts	25
	016138	1613	94						4,376			SOMERSET	Coal Steam	Massachusetts	25
	01702C09	1702						96		4,565		DAN E KARN	Coal Steam	Michigan	26
	01733C12	1733	49	24	80	80		22	46,081	46,040		MONROE	Coal Steam	Michigan	26
	01733C34	1733	27	26		76	26	27	39,362	39,327			Coal Steam	Michigan	26
	017437	1743		91			70	0.4	40.044	15,805			Coal Steam	Michigan	26
	017459A	1745					76	61	18,341	18,324		TRENTON CHANNEL	Coal Steam	Michigan	26
	023641	2364	2	57				07	9,356	9,348		MERRIMACK	Coal Steam	New Hampshire	33
	023642	2364	1 45	17	99		28	87	19,453	19,435			Coal Steam	New Hampshire	33 33
	080021	8002 2378	45		0	1 5			5,033 9,747	5,028			O/G Steam	New Hampshire	
	023781	2378	63	81 97	2 25	15 50		11	9,747 18,785	9,738 18,768		B L ENGLAND HUDSON	Coal Steam O/G Steam	New Jersey	34 34
	024032	2403	03	97	∠ə 95	50	40	44	8,076	10,708		MERCER	Coal Steam	New Jersey	34
	024081	2408			95 60				6,076 5,675			MERCER		New Jersey	34
	024082 02549C01	2408 2549		64			42	72		25 220		C R HUNTLEY	Coal Steam	New Jersey	36
	02549C01 02549C02	2549		04	41		42 99	12	25,343 12,317	25,320		C R HUNTLEY	Coal Steam Coal Steam	New York New York	36
	02549002	2549					99 71		7,720			DANSKAMMER	O/G Steam	New York	36
עויז ב	024004	2400					11		1,120		40		U/G Steam		50

Plants in Red are added as a result of MM5 met modeling.

List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland

Row number CEMS Unit	ORIS ID	Acadia A.	Acadia 1	Brig MINE	Brig VTC	Lye MMS	Lye VTD			Plann.	^{Plant} Type	Siate Name	State Code	
72 D02554C03	2554	33	51	62	4	27	51	30,151	30,125	46 DUNKIRK	Coal Steam	New York	36	
73 D02526C03	2526		51	02		78	51	14,929	50,125	47 WESTOVER	Coal Steam	New York	36	
74 D025276	2527					80		12,650		48 GREENIDGE	Coal Steam	New York	36	
75 D025163	2516			96		00		7,359		49 NORTHPORT	O/G Steam	New York	36	
76 D025945	2594		76					.,	1,747	50 OSWEGO	O/G Steam	New York	36	
77 D02642CS2	2642		_			91		14,086	, -	51 ROCHESTER 7		New York	36	
78 D080061	8006						93	, -	3,817	52 ROSETON	O/G Steam	New York	36	
79 D080062	8006						88		2,840	52 ROSETON	O/G Steam	New York	36	
80 D080421	8042	13	12	18	5	10	34	57,820	57,769	53 BELEWS CREE		North Carolina	37	
81 D080422	8042	23	15	32	10	15	49	45,296	45,256	53 BELEWS CREE	K Coal Steam	North Carolina	37	
82 D027215	2721	98	45		39		85	19,145	19,128	54 CLIFFSIDE	Coal Steam	North Carolina	37	
83 D027133	2713		61					,	14,460	55 L V SUTTON	Coal Steam	North Carolina	37	
84 D027093	2709				97				9,390	56 LEE	Coal Steam	North Carolina	37	
85 D027273	2727	100	40		48	75	84	26,329	26,305	57 MARSHALL	Coal Steam	North Carolina	37	
86 D027274	2727	89	39	83	51	66	82	27,308	27,284	57 MARSHALL	Coal Steam	North Carolina	37	
87 D06250C05	6250	60	59		35	37		27,395	27,371	58 MAYO	Coal Steam	North Carolina	37	
88 D027121	2712				59			12,031	12,020	59 ROXBORO	Coal Steam	North Carolina	37	
89 D027122	2712	82	41		23	94		29,337	29,310	59 ROXBORO	Coal Steam	North Carolina	37	
90 D02712C03	2712	56	37	57	24	21	78	30,776	30,749	59 ROXBORO	Coal Steam	North Carolina	37	
91 D02712C04	2712	88	72		47	47		22,962	22,941	59 ROXBORO	Coal Steam	North Carolina	37	
92 D0283612	2836	55	20	48	89	29	35	41,432	41,395	60 AVON LAKE	Coal Steam	Ohio	39	
93 D028281	2828	29	9	31	30	24	8	37,307	37,274	61 CARDINAL	Coal Steam	Ohio	39	
94 D028282	2828						56	20,598	20,580	61 CARDINAL	Coal Steam	Ohio	39	
95 D028283	2828						80		15,372	61 CARDINAL	Coal Steam	Ohio	39	
96 D028404	2840	3	1	•	2		3	87,801	87,724	62 CONESVILLE	Coal Steam	Ohio	39	
97 D02840C02	2840	84	73			81	63	22,791	22,771	62 CONESVILLE	Coal Steam	Ohio	39	
98 D028375	2837		86			35	70	35,970	35,938	63 EASTLAKE	Coal Steam	Ohio	39	
99 D081021	8102			23	71	59	95	18,207	18,191	64 GEN J M GAVIN		Ohio	39	
100 D081022	8102				78			12,333		64 GEN J M GAVIN		Ohio	39	
101 D028501	2850	36			53		45	30,798	30,771	65 J M STUART	Coal Steam	Ohio	39	
102 D028502	2850	24	65		49		46	28,698	28,673	65 J M STUART	Coal Steam	Ohio	39	
103 D028503	2850	26		72	62			27,968	27,944	65 J M STUART	Coal Steam	Ohio	39	
104 D028504	2850	20	77		52		54	27,343	27,319	65 J M STUART	Coal Steam	Ohio	39	
105 D060312	6031			67	77		90	19,517	19,500	66 KILLEN STATIC		Ohio	39	ļ]
106 D02876C01	2876		7	-	9		10	72,593	72,529	67 KYGER CREEK		Ohio	39	ļ]
107 D028327	2832	65	28	59	22	48	20	46,991	46,950	68 MIAMI FORT	Coal Steam	Ohio	39	

Plants in Red are added as a result of MM5 met modeling.

List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland Printed : 7/17/2007 12:34 PM

Row number CEMS Unit	ORIS ID	Acadia	Acadia 1	Brig Marc	Brig VTC	Lye Mine	the Mr.	2002 502	4 /	102 TPY	P _{lant} N _{ame}	Plant Type	Siate Name	State Code
108 D02832C06	2832				60	43	64	23,694	23,673		MIAMI FORT	Coal Steam	Ohio	39
109 D028725	2872	74	92	78		90	36	30,079	30,052		MUSKINGUM RIVER	Coal Steam	Ohio	39
110 D02872C04	2872	6	19		6	19	15	83,134	83,060		MUSKINGUM RIVER	Coal Steam	Ohio	39
111 D02864C01	2864	70	56		63	49	24	35,193	35,162	70	R E BURGER	Coal Steam	Ohio	39
112 D07253C01	7253		89	58	57		33	30,977	30,949	71	RICHARD GORSUCH		Ohio	39
113 D028665	2866		82				53	19,796	19,779		W H SAMMIS	Coal Steam	Ohio	39
114 D028667	2866	57	16		41	41	16	33,601	33,572		W H SAMMIS	Coal Steam	Ohio	39
115 D02866C01	2866	97	54		96	92	30	24,649	24,627	72	W H SAMMIS	Coal Steam	Ohio	39
116 D02866C02	2866		69	92			50	26,022	25,999		W H SAMMIS	Coal Steam	Ohio	39
117 D02866M6A	2866		85				58	19,564	19,546	72	W H SAMMIS	Coal Steam	Ohio	39
118 D060191	6019		93		72		60		21,496		W H ZIMMER	Coal Steam	Ohio	39
119 D028306	2830	46	38	70	40	12	69	30,466	30,439		WALTER C BECKJORD	Coal Steam	Ohio	39
120 D031782	3178	77	63				81	16,484	16,469		ARMSTRONG	Coal Steam	Pennsylvania	42
121 D031403	3140	31	34		46		18	38,801	38,767		BRUNNER ISLAND	Coal Steam	Pennsylvania	42
122 D03140C12	3140	52	46		69		23	29,736	29,709		BRUNNER ISLAND	Coal Steam	Pennsylvania	42
123 D082261	8226	25	21	33	42		9	40,268	40,232		CHESWICK	Coal Steam	Pennsylvania	42
124 D03179C01	3179	16	10		8	-	4	79,635	79,565		HATFIELD'S FERRY	Coal Steam	Pennsylvania	42
125 D031221	3122	11	6		38		14	45,754	45,714		HOMER CITY	Coal Steam	Pennsylvania	42
126 D031222	3122	9	4	37	92	13	11	55,216	55,167		HOMER CITY	Coal Steam	Pennsylvania	42
127 D031361	3136	8			14		1	87,434	87,357		KEYSTONE	Coal Steam	Pennsylvania	42
128 D031362	3136	18	3		19		2	62,847	62,791		KEYSTONE	Coal Steam	Pennsylvania	42
129 D03148C12	3148			71		84		17,214			MARTINS CREEK	Coal Steam	Pennsylvania	42
130 D031491	3149	19	8		7		6	60,242	60,188		MONTOUR	Coal Steam	Pennsylvania	42
131 D031492	3149	15	5	21	20	3	5	50,276	50,232		MONTOUR	Coal Steam	Pennsylvania	42
132 D031131	3113			82				9,674			PORTLAND	Coal Steam	Pennsylvania	42
133 D031132	3113			36		93		14,294			PORTLAND	Coal Steam	Pennsylvania	42
134 D03131CS1	3131	54	31	79		32	65	22,344	22,324		SHAWVILLE	Coal Steam	Pennsylvania	42
135 D033193	3319				100				11,045		JEFFERIES	O/G Steam	South Carolina	45
136 D033194	3319		90		87				11,838		JEFFERIES	O/G Steam	South Carolina	45
137 D03297WT1			68		61				17,671		WATEREE	Coal Steam	South Carolina	45
138 D03297WT2			83		73				17,199		WATEREE	Coal Steam	South Carolina	45
139 D03298WL1			35	94	37			25,170	25,148		WILLIAMS	Coal Steam	South Carolina	45
140 D062491	6249		58		82				17,920		WINYAH	Coal Steam	South Carolina	45
141 D03403C34	3403			85				20,314			GALLATIN	Coal Steam	Tennessee	47
142 D03405C34								19,368			JOHN SEVIER	Coal Steam	Tennessee	47
143 D03406C10	3406	10	11	27	33	4	43	104,523	104,431	91	JOHNSONVILLE	Coal Steam	Tennessee	47

Plants in Red are added as a result of MM5 met modeling.

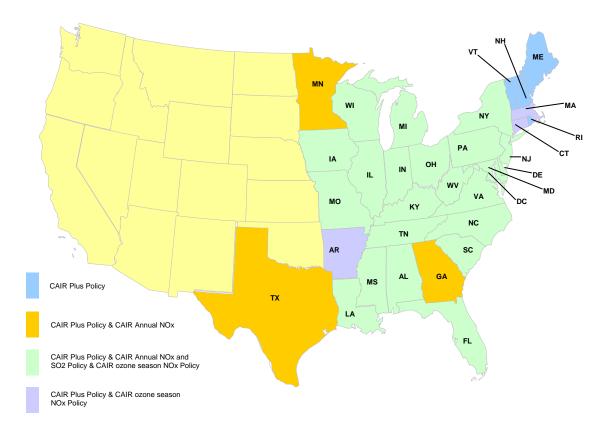
List does not include sources in states that do not contribute 2% of visibility impact to MANE VU Class I areas. MM5 by ERM for Maryland Printed : 7/17/2007 12:34 PM

Row _{number} CEMS Unit	ORIS ID		Acadia 1.	Brig MASE	Brig VTDE	/	Lye VTDES	MM5 2002 502	VTDEC 2002.50		Plant Name	Plant Type	Siate Name	State Code
144 D03407C15	3407	64	87		66	67	76	37,308	37,274		KINGSTON	Coal Steam	Tennessee	47
145 D03407C69	3407	48	98		91	82	91	38,645	38,611		KINGSTON	Coal Steam	Tennessee	47
146 D038033	3803				55				9,493		CHESAPEAKE	Coal Steam	Virginia	51
147 D038034	3803		94		16				10,806		CHESAPEAKE	Coal Steam	Virginia	51
148 D037974	3797				90				9,293		CHESTERFIELD	Coal Steam	Virginia	51
149 D037975	3797		88		27	86		19,620	19,602		CHESTERFIELD	Coal Steam	Virginia	51
150 D037976	3797	66	18	7	3	34	66	40,570	40,534		CHESTERFIELD	Coal Steam	Virginia	51
151 D03775C02	3775	47						16,674			CLINCH RIVER	Coal Steam	Virginia	51
152 D038093	3809		52		29			10,477	10,468		YORKTOWN	Coal Steam	Virginia	51
153 D03809CS0	3809	96	43	19	17	62		21,219	21,201		YORKTOWN	Coal Steam	Virginia	51
154 D039423	3942						79		10,126		ALBRIGHT	Coal Steam	West Virginia	54
155 D039431	3943	51	23		32	16	13	42,385	42,348		FORT MARTIN	Coal Steam	West Virginia	54
156 D039432	3943	50	22	22	31	14	12	45,850	45,809		FORT MARTIN	Coal Steam	West Virginia	54
157 D039353	3935	41	33		11	64	26	42,212	42,174		JOHN E AMOS	Coal Steam	West Virginia	54
158 D03935C02	3935	17	42	43	1	11	21	63,066	63,010		JOHN E AMOS	Coal Steam	West Virginia	54
159 D03947C03	3947	86	62	55		57	25	38,575	38,541		KAMMER	Coal Steam	West Virginia	54
160 D03936C02	3936				98			15,480	15,467		KANAWHA RIVER	Coal Steam	West Virginia	54
161 D03948C02	3948	58	13		36	9	7	55,405	55,356	101	MITCHELL	Coal Steam	West Virginia	54
162 D062641	6264	75	49	50	18	77	40	42,757	42,719	102	MOUNTAINEER	Coal Steam	West Virginia	54
163 D03954CS0	3954	68		24	25	23	67	20,130	20,112	103	MT STORM	Coal Steam	West Virginia	54
164 D0393851	3938				79		97	12,948	12,936	104	PHILIP SPORN	Coal Steam	West Virginia	54
165 D03938C04	3938				94			26,451	26,427	104	PHILIP SPORN	Coal Steam	West Virginia	54
166 D060041	6004			66		83	31	21,581	21,562	105	PLEASANTS	Coal Steam	West Virginia	54
167 D060042	6004			88			92	20,550	20,532	105	PLEASANTS	Coal Steam	West Virginia	54

PROJECT RESULTS EVALUATION OF TIGHTER FEDERAL EMISSIONS CAPS FOR ELECTRIC GENERATING UNITS

June 4, 2007

BACKGROUND


- **<u>Purpose</u>**: This project evaluated an emission control strategy for Electric Generating Units (EGUs) that further reduced emissions beyond current federal requirements throughout the eastern US via a tighter regional cap and trade program. Emissions reductions and costs were estimated in comparison to the federal program.
- <u>Why EGUs</u>: Emissions from EGUs contribute to regional haze in Class I areas throughout the eastern US. Therefore, states must evaluate strategies for reducing emissions from EGUs as part of their efforts to achieve reasonable progress in improving visibility at Class I areas.
- <u>Which Model</u>: To predict future emissions from EGUs, the Mid-Atlantic/Northeast Visibility Union (MANE-VU) and other Regional Planning Organizations have followed the example of the US Environmental Protection Agency (EPA) in using the Integrated Planning Model (IPM[®]), an integrated economic and emissions model. IPM projects energy supply based on various assumptions and develops a least-cost solution to generating needed electricity within specified emissions targets.
- <u>Strategy</u>: EPA's Clean Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will reduce SO₂ and NO_x emissions in the eastern US. This project evaluated an emission control strategy for EGUs that tightened CAIR throughout the eastern US. Emissions reductions and costs were estimated.
- Model Runs: IPM runs are defined by numerous economic and engineering assumptions.
 - EPA developed Base Case v.2.1.9 using IPM to evaluate the impacts of CAIR and the Clean Air Mercury Rule (CAMR). (Recently, EPA updated their input data and developed Base Case v.3.0. Due to timing, all of the following runs used EPA Base Case v.2.1.9 with some updates and corrections.)
 - VISTAS CAIR Base Case. The Regional Planning Organizations collaborated with each other to update EPA Base Case v.2.1.9 using more current data about EGUs with more realistic fuel prices, creating an IPM run called VISTAS PC_1f. This VISTAS IPM implementation is the one that has been used in regional air quality modeling for ozone and haze state implementation plans.
 - MARAMA CAIR Base Case. MANE-VU, through MARAMA, contracted with ICF to prepare two new IPM runs. The MARAMA CAIR Base Case run was based on the VISTAS PC_1f run and underlying EPA Base Case v.2.1.9, with some of the information

updated, (e.g., fuel prices, control constraints, etc.) to better reflect current information. The MARAMA CAIR Base Case run is also sometimes called MARAMA_5c.

MARAMA CAIR Plus Run. The MARAMA CAIR Plus run was also based on VISTAS PC_1f run and the underlying EPA Base Case v.2.1.9, but using lower NO_x emission caps and higher SO₂ retirement ratios. Consistent with the MARAMA CAIR Base Case Run, the CAIR Plus Run also updated some of the information used in the VISTAS run (e.g., fuel prices, control constraints, etc.) to better reflect current information. The MARAMA CAIR Plus run is also sometimes referred to as MARAMA_4c.

ASSUMPTIONS

- The assumptions for and results of the MARAMA CAIR Base Case run and the MARAMA CAIR Plus run are summarized in the final draft ICF report titled "Comparison of CAIR and CAIR Plus Proposal using the Integrated Planning Model (IPM), May 30 2007.
- For purposes of this analysis, the CAIR region included all states included in any part of the EPA CAIR annual or seasonal program as well as all New England states. Figure 1 below from the final draft ICF report is a U.S. map with the states affected by CAIR and CAIR Plus policies as implemented in the MARAMA CAIR and CAIR Plus IPM runs.

Figure 1: States affected by CAIR and MARAMA CAIR Plus Policies

 Table 3 below from the final draft ICF report summarizes the NO_x budgets implemented in the MARAMA Base Case and MARAMA CAIR Plus IPM Policy runs. This shows the

> Mid-Atlantic/Northeast Visibility Union 444 N. Capitol Street, NW, Suite 638, Washington, DC 20001

overall reduction in NO_x emissions to be achieved through the implementation of CAIR Plus as compared to CAIR.

	NO _x Ozone Se	ason Budget	NO _x Annual Budget			
Year	MARAMA Base Case	MARAMA CAIR Plus Policy Case	MARAMA Base Case	MARAMA CAIR Plus Policy Case		
2009	568	623	1,722*	1,553*		
2010	568	623	1,522	1,353		
2012	568	415	1,522	902		
2015	518	395	1,370	858		
2018	485	382	1,268	829		

Table 3: NO_x Budgets in the CAIR/CAIR Plus Region (Thousand Tons)

*Includes NO_x Compliance Supplement Pool of 199,997 tons included in 2009.

Note: The 2015 budgets as modeled in IPM are the average of the budgets over the period 2013-2017. The actual ozone season NO_x budgets proposed are 485 thousand tons in CAIR and 382 thousand tons in CAIR plus for 2015. The actual annual NO_x budgets proposed are 1,268 thousand tons in CAIR and 829 thousand tons in CAIR plus for 2015.

As shown below in Table 4 from the final draft ICF report, the CAIR Plus run required a greater number of SO₂ allowances be retired for each ton of pollution discharged. This effect of this was to reduce the total amount of SO₂ emissions allowed within the CAIR Plus region.

	SO ₂ Allowance Retirement Ratio						
Year	MARAMA	MARAMA					
	Base Case	CAIR Plus					
		Policy Case					
2009	1.00	1.00					
2010	2.00	2.50					
2012	2.00	2.94					
2015	2.52	3.32					
2018	2.86	4.16					

Table 4: SO₂ Allowance Retirement Ratios in the CAIR/CAIR Plus Region

Note: The 2015 retirement ratios as modeled in IPM are the average of the retirement ratios over the period 2013-2017. The actual retirement ratios are 2.86 for CAIR and 3.57 for CAIR Plus for 2015.

RESULTS

- Strengthening CAIR would achieve significant emission reductions, increase the use of natural gas, decrease the use of coal, and drive the construction of new, cleaner plants.
- The final draft ICF report projects that CAIR Plus would reduce national SO₂ emissions in 2018 from all fossil and non-fossil fuel-fired Electric Generating Units (EGUs) by 845,300 tons per year, from 4,785,600 to 3,940,300 tons per year, an 18% reduction.
 - SO₂ emissions in 2018 from all fossil and non-fossil fuel-fired EGUs are projected to decline by 31% in the MANE-VU region, 12% in the Midwest, 29% in the Southeast, and 15% in the Central States. The CAIR Plus strategy would not apply in the West, so emissions there would grow by 5%. (See report, Table 8.)

- The report also projects that CAIR Plus would reduce national NO_x emissions in 2018 from all fossil and non-fossil fuel-fired Electric Generating Units (EGUs) by 480,500 tons per year, from 2,065,600 to 1,585,100 tons per year, a 23% national reduction (27% in MANE-VU) (Table 9).
- The report projects that the annualized incremental cost of the CAIR Plus policy (over and above the cost of the CAIR program) would be \$2.57 Billion (1999\$) in 2018 (Table 5). This includes the annualized capital costs of new control equipment and new plants, fuel costs, and variable and fixed operation and maintenance costs. This is a 2% increase (Table A5.8).
- The report projects that the marginal cost of SO₂ emission reductions as manifested in the projected SO₂ allowance prices would increase from \$1,106 (1999\$/ton) in 2018 with CAIR to \$1,392 (1999\$/ton) with CAIR Plus, a 26% increase (Table 6).
- The report estimates that with CAIR Plus, in the US an additional 17 gigawatts (GWs) of coal plant capacity would be controlled by SO₂ scrubbers and an additional 65 GW controlled by SCR (for NO_x) as compared to the projected controls under CAIR (Table 7).
- The costs and benefits listed above reflect that in comparison to the CAIR base case,
 - more new plants would be built under a CAIR Plus strategy, and more older plants would be retired; newer plants would have lower emissions (pp. 15-17);
 - the generation mix would change towards lower emission intensive fuel and plant types, including more IGCCs (pp. 16-17); and
 - natural gas-fired generation would increase and generation from coal steam EGUs would decrease in all years except 2012. Increased installation of controls and an increase in coal generation occur in 2012, the first year when the SCR and SO₂ scrubber feasibility constraints were no longer applied in the CAIR Plus strategy. In years after 2012, the CAIR Plus SO₂ and NO_x policies continue to become more stringent resulting in an increase in natural gas-based generation. (See p. 15.)

MORE INFORMATION

- The final draft ICF report summarizing the results of the MARAMA CAIR and CAIR Plus runs is available at <u>www.manevu.org</u> under Publications—Reports. It is also posted at <u>www.marama.org</u> under regional haze, projects, MANE-VU future year emissions inventories.
- Information about the VISTAS CAIR Base Case run is summarized in an appendix to the report. More information is also posed at <u>www.ladco.org</u> under regional air quality planning, G. IPM Emissions Summaries.

TECHNICAL OVERSIGHT COMMITTEE

Representatives from each MANE-VU state have participated in reviewing draft materials prepared under this project. Team members include:

New Hampshire: Andy Bodnarik, Liz Nixon, Jeff Underhill Connecticut: David Wackter Delaware: David Fees, Mohammed Majeed District of Columbia: Stan Tracey, Ram Tangirala Maine: Tom Downs Maryland: Tad Aburn, Diane Franks, Brian Hug MARAMA: Susan Wierman, Patrick Davis, Julie McDill New Jersey: Chris Salmi, Ray Papalski New York: Ron Stannard, Gopal Sistla, John Kent Pennsylvania: Dean Van Orden, Wick Havens Rhode Island: Karen Slattery OTC: Chris Recchia, Anna Garcia, Doug Austin Massachusetts: Stephen Dennis Vermont: Paul Wishinski

CONTACT INFORMATION: Susan Wierman or Julie McDill, MARAMA (swierman@marama.org or jmcdill@marama.org)

Mid-Atlantic/Northeast Visibility Union 444 N. Capitol Street, NW, Suite 638, Washington, DC 20001

Summary of Work

Baseline, Natural Conditions, and Uniform Rate

1) Baseline and Natural Background Visibility Conditions -	12/2006
Considerations and Proposed Approach to the Calculation	
of Baseline and Natural Background Visibility Conditions	
at MANE-VU Class I Areas, 21 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
<pre>documents/atct_topic_view?b_start:int=0</pre>	
2) The Nature of the Fine Particle and Regional Haze Air	11/2006
Quality Problems in the MANE-VU Region:	
A Conceptual Description, 92 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	

MANE-VU Emissions Inventory Data and Documentation - June 2007

I. 2002 Emissions Inventory

MANE-VU

Contractor: Pechan – Randy Strait Documentation and Database files can be found at <u>ftp.marama.org</u> Subdirectory 2002 Version 3 Username: mane-vu Password: exchange

- Version 3 of the 2002 MANE-VU Inventory
- Summaries for biogenic, Area, Point, Non-Road, and Onroad sectors of Version 3 of 2002 MANE-VU Inventory.
- Technical Support Document (TSD)

Midwest RPO

Contractor: Alpine – Greg Stella

• BaseK Emission Inventory conversion to SMOKE-ready format.

II. Non-EGU Future Year Emissions Inventory

MANE-VU

Contractor: MACTEC – Ed Sabo Database files can be found at <u>ftp.marama.org</u> Username: future Password: emissions

Documentation can be found at www.marama.org/visibility/Inventory%20Summary/FutureEmissionsInventory.htm

• OTB/OTW 2009/12/18 MANE-VU Inventory

"On the books/On the Way" (OTB/OTW) Emissions inventories in both NIF and IDA format for Non-EGU, Point, Area, and Non-Road.

• BOTW 2009/12/18 MANE-VU Inventory

"Beyond On the Way" (BOTW) Emissions inventories in both NIF and IDA format for non EGU Point, Area, and Non-Road were developed based on the OTC control measures matrix. For regional haze purposes, except for SO2 controls, the BOTW controls are assumed in place by 2018.

• Technical Support Document (TSD)

Midwest RPO

Contractor: Alpine – Greg Stella

• BaseK 2009/12/18 OTB/OTW Growth and Control Factors Conversion to produce SMOKE-ready input files for all source categories.

III. EGU Future Year Emissions Inventory

IPM Modeling of EGU emissions for future years Contractor: ICF – Boddu Venkatesh & Alpine – Greg Stella Database files can be found at <u>ftp.marama.org</u> Subdirectory 2.1.9 EGUs Username: mane-vu Password: exchange

Documentation for this IPM run is not available

• VISTAS 2.1.9 IPM 2009/12/18 CAIR Inventory. (ICF – Boddu Venkatesh)

"ICF completed an IPM 2.1.9 modeling run based on the VISTAS PC_1f inventory. This run was headed by VISTAS, but has input from all RPOs. *This is the IPM run MANE-VU is using for all of our base case CMAQ modeling.*

- 2009/12/18 VISTAS 2.1.9 IPM output was converted into NIF and IDA format for CMAQ modeling by Alpine (Greg Stella)
- 2009 Non-Fossil EGU IDA Conversion of non-Fossil EGU data into an IDA format for CMAQ modeling. All MANE-VU states were asked to submit a list of their non-fossil EGU units in the 2009 inventory. (Alpine Greg Stella)

IV. MANE VU Inventories for Sensitivity Analysis

• MANE-VU Fuel Oil sulfur content sensitivity Inventories. (Ongoing) Contractor: Alpine – Greg Stella No documents yet available for posting online.

Two 2018 sensitivity modeling inventories (S-1 and S-1) are being developed for use in REMSAD modeling. They will be based on the MANE-VU 2018 BOTW Emissions Inventory. The sulfur content of the #2/4/6 fuel oils will be restricted for all SCCs that use these fuels, except EGUs. EGUs are excluded because the sulfur in fuels burning in EGUs is subject to emissions trading. Therefore

restrictions on the sulfur content of these fuels would free up allowances in the market that would be used elsewhere, resulting in no net emissions decrease. The sulfur content for fuel oil is restricted as follows:

Sensitivity Inventory - 2018 S-1	
Home heating and #2 Distillate Oil	- 500 ppm S (0.05%)
#4 Distillate/Residual Oil	2500 ppm S (0.25%)
#6 Residual Oil	5000 ppm S (0.5%)
(Except parts of CT & NY)	
#6 Residual Oil	3000 ppm S (0.3%)
(For parts of CT & NY)	
Sensitivity Inventory - 2018 S-2	
Home heating and #2 Distillate Oil	- 15 ppm S (0.0015%)
#4 Distillate/Residual Oil	2500 ppm S (0.25%)
#6 Residual Oil	5000 ppm S (0.5%)
#6 Residual Oil (Except parts of CT & NY)	5000 ppm S (0.5%)
	5000 ppm S (0.5%) 3000 ppm S (0.3%)

Alpine is tasked with developing the Growth and Control packets that can be applied to the MANE-VU 20018 BOTW Inventory to develop the S-1 and S-2 inventories.

 MANE-VU Additional Limits on EGU NOx and SOx Sensitivity IPM Modeling Run Comparing CAIR with CAIR+ Contractor: ICF – Boddu Venkatesh Database files are not yet available.

Draft technical support documentation and fact sheets can be found at: <u>www.marama.org/visibility/Inventory%20Summary/FutureEmissionsInventory.ht</u> <u>m</u>

o 2.1.9 IPM 2009/12/18 MANE-VU Base Case EGU Inventory S.T.E.T.

This IPM run is known as the MANE-VU Base Case or MARAMA_5c. It was developed by MANE-VU based on the VISTAS 2.1.9 framework with updated natural gas prices and a few other adjustments to the input specifications. This Base Case was run to allow a comparison to the MANE-VU CAIR+ run described below. It has not been used for regional air quality modeling.

State level results are available for this run. 2009/12/18 NIF and IDA files are available.

o 2.1.9 IPM 2009/12/18 MANE-VU CAIR+ Inventory S.T.E.T.

This IPM run is known as the MANE-VU CAIR+ or MARAMA_4c. It was developed by MANE-VU based on the VISTAS 2.1.9 framework with updated natural gas prices and a few other adjustments to the input specifications. The results of this CAIR+ can be compared to the to the MANE-VU Base Case run described above. It has not been used for regional air quality modeling.

State level results are available for this run.

IV. Inter-RPO EI Warehouse System

Contractor: ERG – Grace Kitzmiller/William Gerber Warehouse can be found at: http://app2.erg.com:8080/rpoapp/

MARAMA has uploaded the Version 3 2002 MANE-VU Emissions Inventory. VISTAS has also uploaded data. Problems with the uploaded data and the warehouse system are currently being worked out.

V. Additional Data

Contractor: EH Pechan OMNI

Documentation and Database files can be found at http://www.marama.org/visibility/ResWoodCombustion/

MARAMA has provided two updates of the National Emissions Inventory for residential wood combustion. Some states have chosen to use some of these results in preparing their 2002 inventories. In general, these updates are part of an ongoing process to refine information about this source category as it is a large source of emissions with very uncertain emission estimates.

BART

1) Five-Factor Analysis of BART-Eligible Sources:	2/2007
Survey of Options for Conducting BART Determinations	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
2) BART Resource Guide, 34 pages	8/2006
http://www.nescaum.org/documents/bart-resource-guide	
3) Assessment of Control Technology	3/2005
Options for BART-Eligible Sources, 102 pages	
http://www.nescaum.org/documents/bart-resource-guide	
4) Development of a List of BART-Eligible Sources in the	5/2003
MANE-VU Region: Interim Report, 74 pages	
http://www.nescaum.org/documents/bart-resource-guide	
5) A Basis for Control of BART-Eligible Sources, 168 pages	7/2001
http://www.nescaum.org/documents/bart-resource-guide_	

Areas of Influence

1) Contributions to Regional Haze in the Northeast and	8/2006
Mid-Atlantic United States, 122 pages + Appendices A-D	
http://www.nescaum.org/documents/contributions-to-regional-haze-in-	the-northeast-
and-mid-atlanticunited-states	
2) Regional Aerosol Intensive Network (RAIN),	5/2006
Preliminary Data Analysis, 63 pages	
www.manevu.org/document.asp?FView+reports#	
3) UMD Data Analysis Subcontract: Manuscripts on Data from	2/2006
the 2002 MANE-VU UMD Flights	
www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
4) Upper Air Balloon Study – Millersville, PA, Winter 2004	2/2006
www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
5) Source Apportionment Analysis of Air Quality Monitoring Data:	3/2005
Phase II, 102 pages	
http://www.marama.org/visibility/SA_phase2/index.html	
6) Wintertime Tethered Balloon Measurements of Meteorological	1/2005
Variables and Aerosol Characterization in Support of MANE-VU, 17	pages
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
7) Review of Speciation Trends Network and IMPROVE	3/2003
Chemically Speciated Data, Technical Memo #7, 71 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
8) REMSAD Platform Intercomparison Experiments,	2/2002
Technical Memo #5, 25 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	

9) Trajectory Analysis of Potential Source Regions Affecting Class I	2/2002
Areas in the MANE-VU Region, Technical Memo #3, 32 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
10) REMSAD Modeling Exercises, Technical Memo #2, 44 pages	2/2002
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
11) GIS Mapping of Regional Haze-Related Data in the	2/2002
MANE-VU Region, Technical Memo #4, 41 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
12) Updated Visibility Statistics for the MANE-VU Region,	2/2002
Technical Memo #1, 50 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
13) Source Apportionment Analysis of Air Quality Monitoring Data:	2/2002
Phase 1, 110 pages	
http://www.marama.org/visibility/SA_report/	
14) Meteorological Data Archive Feasibility Assessment, 3 pages	1/2002
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
15) Determination of Fine Particle and Coarse Particle Concentrations	12/1999
in the Northeast United States, 1995, 85 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	

Reasonable Progress and Long Term Strategy

1) Reasonable Progress Goal Project Summary, 5 pages	4/2007
http://www.marama.org/visibility/RPG/index.html#products	
2) Assessing Reasonable Progress for Regional Haze in the Mid-Atlantic North	Eastern
Class I Areas Draft Final Report, 140 pages	4/2007
http://www.marama.org/visibility/RPG/index.html#products	
3) Assessing Reasonable Progress for Regional Haze in the Mid-Atlantic North	Eastern
Class I Areas (Revised Draft Final Technical Memorandum #3), 129 pages	3/2007
http://www.marama.org/visibility/RPG/index.html#products	
4) Methods for Evaluations Technical Memorandum #2 Final, 5 pages	2/2007
http://www.marama.org/visibility/RPG/index.html#products	
5) Control Scenarios Technical Memorandum #1 Final, 4 pages	2/2007
http://www.marama.org/visibility/RPG/index.html#products	
6) Final Work Plan, 11 pages	1/2007
http://www.marama.org/visibility/RPG/index.html#products	

Communications and Outreach

1) MANE-VU Newsletter	Fall 2006
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
2) MANE-VU's Comments on EPA / Bill Harnett Memorandum	8/2006
entitled "Process for Interstate Consultation on Regional Haze	
SIP Development," 3 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
3) MANE-VU's Comments on Proposed IMPROVE Network	8/2006
Reduction Plan, 7 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
4) Final Consultation Framework as approved by the MANE-VU Board	5/2006
on May 10, 2006, 6 pages	
http://www.manevu.org/document.asp?fview=Correspondence#	
5) MANE-VU Newsletter	Spring 2006
http://www.manevu.org/document.asp?fview=Fact%20Sheets# 6) MANE-VU's Comments on EPA's "Draft Guidance for Setting	1/2006
Reasonable Progress Goals Under the Regional Haze Program," 9 page	es
http://www.manevu.org/document.asp?fview=Correspondence#	
7) MANE-VU's Comments on Proposed BART Trading Rule, 5 pages	9/2005
http://www.manevu.org/document.asp?fview=Correspondence#	
8) MANE-VU Newsletter	Fall 2005
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
9) MANE-VU Newsletter	Spring 2005
http://www.manevu.org/document.asp?fview=Fact%20Sheets#	
10) Regional Haze – A Resource Guide for Journalists, 33 pages	5/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
11) Regional Haze Reduces Visibility (Tri-fold brochure)	3/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct topic view?b start:int=0	

12) Haze Communication Using CAMNET and IMPROVE Archives:	1/2005
Case Study at Acadia National Park, 13 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
13) About Regional Haze: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
14) The Health Effects of Regional Haze: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
15) About MANE-VU: Fact Sheet, 2 pages	1/2005
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=0	
16) MANE-VU's Comments on Proposed BART Rule, 27 pages	7/2004
http://www.manevu.org/document.asp?fview=Correspondence#	
17) Scoping Study on Regional Haze, Initial Communications	12/2002
and Outreach Framework, 52 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	

Miscellaneous

1) TSD on Measures to Mitigate the Visibility Impacts of	10/2006
Construction Activities in the MANE-VU Region, 13 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
2) TSD on Agricultural and Forestry Smoke Management	9/2006
in the MANE-VU Region, 18 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
3) EPA Checklist for Regional Haze SIPs Submitted Under	8/2006
40 CFR 51.308, 14 pages	
http://www.marama.org/visibility/SIP%5FPlanning/	
4) 2006 Interim Report, 21 pages	5/2006
http://www.manevu.org/document.asp?Fview=Reports#	
5) Draft Regional Haze SIP/TIP Template, 42 pages	1/2005
http://www.manevu.org/document.asp?Fview=Reports	
6) MANE-VU Technical Work Plan, 20 pages	3/2003
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	
7) Regional Haze and Visibility in the Northeast and Mid-Atlantic	1/2001
States, 265 pages	
http://www.nescaum.org/topics/regional-haze/regional-haze-	
documents/atct_topic_view?b_start:int=50	